3.1.54 \(\int (b \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [54]

3.1.54.1 Optimal result
3.1.54.2 Mathematica [A] (verified)
3.1.54.3 Rubi [A] (verified)
3.1.54.4 Maple [B] (verified)
3.1.54.5 Fricas [C] (verification not implemented)
3.1.54.6 Sympy [F(-1)]
3.1.54.7 Maxima [F]
3.1.54.8 Giac [F]
3.1.54.9 Mupad [F(-1)]

3.1.54.1 Optimal result

Integrand size = 31, antiderivative size = 112 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {2 b^3 (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 b^2 (7 A+5 C) \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 C (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 d} \]

output
2/7*C*(b*cos(d*x+c))^(5/2)*sin(d*x+c)/d+2/21*b^3*(7*A+5*C)*(cos(1/2*d*x+1/ 
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos 
(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)+2/21*b^2*(7*A+5*C)*sin(d*x+c)*(b*cos( 
d*x+c))^(1/2)/d
 
3.1.54.2 Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {b (b \cos (c+d x))^{3/2} \left (4 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \sqrt {\cos (c+d x)} (14 A+13 C+3 C \cos (2 (c+d x))) \sin (c+d x)\right )}{42 d \cos ^{\frac {3}{2}}(c+d x)} \]

input
Integrate[(b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]
 
output
(b*(b*Cos[c + d*x])^(3/2)*(4*(7*A + 5*C)*EllipticF[(c + d*x)/2, 2] + 2*Sqr 
t[Cos[c + d*x]]*(14*A + 13*C + 3*C*Cos[2*(c + d*x)])*Sin[c + d*x]))/(42*d* 
Cos[c + d*x]^(3/2))
 
3.1.54.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {3042, 2030, 3493, 3042, 3115, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b \int \left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{3/2} \left (C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+A\right )dx\)

\(\Big \downarrow \) 3493

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \int (b \cos (c+d x))^{3/2}dx+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b \left (\frac {1}{7} (7 A+5 C) \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\right )\)

input
Int[(b*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]
 
output
b*((2*C*(b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*b*d) + ((7*A + 5*C)*((2*b^ 
2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) 
 + (2*b*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/7)
 

3.1.54.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3493
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*( 
x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f 
*(m + 2))), x] + Simp[(A*(m + 2) + C*(m + 1))/(m + 2)   Int[(b*Sin[e + f*x] 
)^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
3.1.54.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(295\) vs. \(2(124)=248\).

Time = 16.85 (sec) , antiderivative size = 296, normalized size of antiderivative = 2.64

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (48 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) C \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (28 A +56 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-14 A -16 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+7 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{21 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(296\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 C \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b^{3} \left (48 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(402\)

input
int((cos(d*x+c)*b)^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x,method=_RETURNVER 
BOSE)
 
output
-2/21*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3*(48*C* 
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-72*cos(1/2*d*x+1/2*c)*C*sin(1/2*d* 
x+1/2*c)^6+(28*A+56*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-14*A-16*C 
)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+7*A*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5* 
C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c 
)^2))^(1/2)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.1.54.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.04 \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {-i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} b^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (3 \, C b^{2} \cos \left (d x + c\right )^{2} + {\left (7 \, A + 5 \, C\right )} b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{21 \, d} \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm= 
"fricas")
 
output
1/21*(-I*sqrt(2)*(7*A + 5*C)*b^(5/2)*weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c)) + I*sqrt(2)*(7*A + 5*C)*b^(5/2)*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*(3*C*b^2*cos(d*x + c)^2 + (7*A + 
5*C)*b^2)*sqrt(b*cos(d*x + c))*sin(d*x + c))/d
 
3.1.54.6 Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\text {Timed out} \]

input
integrate((b*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c),x)
 
output
Timed out
 
3.1.54.7 Maxima [F]

\[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm= 
"maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c), x)
 
3.1.54.8 Giac [F]

\[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}} \sec \left (d x + c\right ) \,d x } \]

input
integrate((b*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm= 
"giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(5/2)*sec(d*x + c), x)
 
3.1.54.9 Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\cos \left (c+d\,x\right )} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x),x)
 
output
int(((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(5/2))/cos(c + d*x), x)